四虎在线精品,免费国产小视频在线观看,国产在线一区观看,一级毛片试看60分钟免费播放

課程目錄:為電信服務供應商的智能大數(shù)據(jù)信息業(yè)務培訓
4401 人關注
(78637/99817)
課程大綱:

         為電信服務供應商的智能大數(shù)據(jù)信息業(yè)務培訓

 

 

 

Breakdown of topics on daily basis: (Each session is 2 hours)

Day-1: Session -1: Business Overview of Why Big Data Business Intelligence in Telco.
Case Studies from T-Mobile, Verizon etc.
Big Data adaptation rate in North American Telco & and how they are aligning their future business model and operation around Big Data BI
Broad Scale Application Area
Network and Service management
Customer Churn Management
Data Integration & Dashboard visualization
Fraud management
Business Rule generation
Customer profiling
Localized Ad pushing
Day-1: Session-2 : Introduction of Big Data-1
Main characteristics of Big Data-volume, variety, velocity and veracity. MPP architecture for volume.
Data Warehouses – static schema, slowly evolving dataset
MPP Databases like Greenplum, Exadata, Teradata, Netezza, Vertica etc.
Hadoop Based Solutions – no conditions on structure of dataset.
Typical pattern : HDFS, MapReduce (crunch), retrieve from HDFS
Batch- suited for analytical/non-interactive
Volume : CEP streaming data
Typical choices – CEP products (e.g. Infostreams, Apama, MarkLogic etc)
Less production ready – Storm/S4
NoSQL Databases – (columnar and key-value): Best suited as analytical adjunct to data warehouse/database
Day-1 : Session -3 : Introduction to Big Data-2
NoSQL solutions

KV Store - Keyspace, Flare, SchemaFree, RAMCloud, Oracle NoSQL Database (OnDB)
KV Store - Dynamo, Voldemort, Dynomite, SubRecord, Mo8onDb, DovetailDB
KV Store (Hierarchical) - GT.m, Cache
KV Store (Ordered) - TokyoTyrant, Lightcloud, NMDB, Luxio, MemcacheDB, Actord
KV Cache - Memcached, Repcached, Coherence, Infinispan, EXtremeScale, JBossCache, Velocity, Terracoqua
Tuple Store - Gigaspaces, Coord, Apache River
Object Database - ZopeDB, DB40, Shoal
Document Store - CouchDB, Cloudant, Couchbase, MongoDB, Jackrabbit, XML-Databases, ThruDB, CloudKit, Prsevere, Riak-Basho, Scalaris
Wide Columnar Store - BigTable, HBase, Apache Cassandra, Hypertable, KAI, OpenNeptune, Qbase, KDI
Varieties of Data: Introduction to Data Cleaning issue in Big Data
RDBMS – static structure/schema, doesn’t promote agile, exploratory environment.
NoSQL – semi structured, enough structure to store data without exact schema before storing data
Data cleaning issues
Day-1 : Session-4 : Big Data Introduction-3 : Hadoop
When to select Hadoop?
STRUCTURED - Enterprise data warehouses/databases can store massive data (at a cost) but impose structure (not good for active exploration)
SEMI STRUCTURED data – tough to do with traditional solutions (DW/DB)
Warehousing data = HUGE effort and static even after implementation
For variety & volume of data, crunched on commodity hardware – HADOOP
Commodity H/W needed to create a Hadoop Cluster
Introduction to Map Reduce /HDFS
MapReduce – distribute computing over multiple servers
HDFS – make data available locally for the computing process (with redundancy)
Data – can be unstructured/schema-less (unlike RDBMS)
Developer responsibility to make sense of data
Programming MapReduce = working with Java (pros/cons), manually loading data into HDFS
Day-2: Session-1.1: Spark : In Memory distributed database
What is “In memory” processing?
Spark SQL
Spark SDK
Spark API
RDD
Spark Lib
Hanna
How to migrate an existing Hadoop system to Spark
Day-2 Session -1.2: Storm -Real time processing in Big Data
Streams
Sprouts
Bolts
Topologies
Day-2: Session-2: Big Data Management System
Moving parts, compute nodes start/fail :ZooKeeper - For configuration/coordination/naming services
Complex pipeline/workflow: Oozie – manage workflow, dependencies, daisy chain
Deploy, configure, cluster management, upgrade etc (sys admin) :Ambari
In Cloud : Whirr
Evolving Big Data platform tools for tracking
ETL layer application issues
Day-2: Session-3: Predictive analytics in Business Intelligence -1: Fundamental Techniques & Machine learning based BI :
Introduction to Machine learning
Learning classification techniques
Bayesian Prediction-preparing training file
Markov random field
Supervised and unsupervised learning
Feature extraction
Support Vector Machine
Neural Network
Reinforcement learning
Big Data large variable problem -Random forest (RF)
Representation learning
Deep learning
Big Data Automation problem – Multi-model ensemble RF
Automation through Soft10-M
LDA and topic modeling
Agile learning
Agent based learning- Example from Telco operation
Distributed learning –Example from Telco operation
Introduction to Open source Tools for predictive analytics : R, Rapidminer, Mahut
More scalable Analytic-Apache Hama, Spark and CMU Graph lab
Day-2: Session-4 Predictive analytics eco-system-2: Common predictive analytic problems in Telecom
Insight analytic
Visualization analytic
Structured predictive analytic
Unstructured predictive analytic
Customer profiling
Recommendation Engine
Pattern detection
Rule/Scenario discovery –failure, fraud, optimization
Root cause discovery
Sentiment analysis
CRM analytic
Network analytic
Text Analytics
Technology assisted review
Fraud analytic
Real Time Analytic
Day-3 : Sesion-1 : Network Operation analytic- root cause analysis of network failures, service interruption from meta data, IPDR and CRM:
CPU Usage
Memory Usage
QoS Queue Usage
Device Temperature
Interface Error
IoS versions
Routing Events
Latency variations
Syslog analytics
Packet Loss
Load simulation
Topology inference
Performance Threshold
Device Traps
IPDR ( IP detailed record) collection and processing
Use of IPDR data for Subscriber Bandwidth consumption, Network interface utilization, modem status and diagnostic
HFC information
Day-3: Session-2: Tools for Network service failure analysis:
Network Summary Dashboard: monitor overall network deployments and track your organization's key performance indicators
Peak Period Analysis Dashboard: understand the application and subscriber trends driving peak utilization, with location-specific granularity
Routing Efficiency Dashboard: control network costs and build business cases for capital projects with a complete understanding of interconnect and transit relationships
Real-Time Entertainment Dashboard: access metrics that matter, including video views, duration, and video quality of experience (QoE)
IPv6 Transition Dashboard: investigate the ongoing adoption of IPv6 on your network and gain insight into the applications and devices driving trends
Case-Study-1: The Alcatel-Lucent Big Network Analytics (BNA) Data Miner
Multi-dimensional mobile intelligence (m.IQ6)
Day-3 : Session 3: Big Data BI for Marketing/Sales –Understanding sales/marketing from Sales data: ( All of them will be shown with a live predictive analytic demo )
To identify highest velocity clients
To identify clients for a given products
To identify right set of products for a client ( Recommendation Engine)
Market segmentation technique
Cross-Sale and upsale technique
Client segmentation technique
Sales revenue forecasting technique
Day-3: Session 4: BI needed for Telco CFO office:
Overview of Business Analytics works needed in a CFO office
Risk analysis on new investment
Revenue, profit forecasting
New client acquisition forecasting
Loss forecasting
Fraud analytic on finances ( details next session )
Day-4 : Session-1: Fraud prevention BI from Big Data in Telco-Fraud analytic:
Bandwidth leakage / Bandwidth fraud
Vendor fraud/over charging for projects
Customer refund/claims frauds
Travel reimbursement frauds
Day-4 : Session-2: From Churning Prediction to Churn Prevention:
3 Types of Churn : Active/Deliberate , Rotational/Incidental, Passive Involuntary
3 classification of churned customers: Total, Hidden, Partial
Understanding CRM variables for churn
Customer behavior data collection
Customer perception data collection
Customer demographics data collection
Cleaning CRM Data
Unstructured CRM data ( customer call, tickets, emails) and their conversion to structured data for Churn analysis
Social Media CRM-new way to extract customer satisfaction index
Case Study-1 : T-Mobile USA: Churn Reduction by 50%
Day-4 : Session-3: How to use predictive analysis for root cause analysis of customer dis-satisfaction :
Case Study -1 : Linking dissatisfaction to issues – Accounting, Engineering failures like service interruption, poor bandwidth service
Case Study-2: Big Data QA dashboard to track customer satisfaction index from various parameters such as call escalations, criticality of issues, pending service interruption events etc.
Day-4: Session-4: Big Data Dashboard for quick accessibility of diverse data and display :
Integration of existing application platform with Big Data Dashboard
Big Data management
Case Study of Big Data Dashboard: Tableau and Pentaho
Use Big Data app to push location based Advertisement
Tracking system and management
Day-5 : Session-1: How to justify Big Data BI implementation within an organization:
Defining ROI for Big Data implementation
Case studies for saving Analyst Time for collection and preparation of Data –increase in productivity gain
Case studies of revenue gain from customer churn
Revenue gain from location based and other targeted Ad
An integrated spreadsheet approach to calculate approx. expense vs. Revenue gain/savings from Big Data implementation.
Day-5 : Session-2: Step by Step procedure to replace legacy data system to Big Data System:
Understanding practical Big Data Migration Roadmap
What are the important information needed before architecting a Big Data implementation
What are the different ways of calculating volume, velocity, variety and veracity of data
How to estimate data growth
Case studies in 2 Telco
Day-5: Session 3 & 4: Review of Big Data Vendors and review of their products. Q/A session:
AccentureAlcatel-Lucent
Amazon –A9
APTEAN (Formerly CDC Software)
Cisco Systems
Cloudera
Dell
EMC
GoodData Corporation
Guavus
Hitachi Data Systems
Hortonworks
Huawei
HP
IBM
Informatica
Intel
Jaspersoft
Microsoft
MongoDB (Formerly 10Gen)
MU Sigma
Netapp
Opera Solutions
Oracle
Pentaho
Platfora
Qliktech
Quantum
Rackspace
Revolution Analytics
Salesforce
SAP
SAS Institute
Sisense
Software AG/Terracotta
Soft10 Automation
Splunk
Sqrrl
Supermicro
Tableau Software
Teradata
Think Big Analytics
Tidemark Systems
VMware (Part of EMC)

四虎在线精品,免费国产小视频在线观看,国产在线一区观看,一级毛片试看60分钟免费播放
<strike id="jrjdx"><ins id="jrjdx"></ins></strike>

<address id="jrjdx"></address>

    <listing id="jrjdx"><listing id="jrjdx"><meter id="jrjdx"></meter></listing></listing>
    <address id="jrjdx"></address><form id="jrjdx"><th id="jrjdx"><th id="jrjdx"></th></th></form>
    <address id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address></address>
    <noframes id="jrjdx">

    <noframes id="jrjdx">
    <form id="jrjdx"></form><form id="jrjdx"></form>

      <noframes id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address>
      <noframes id="jrjdx">

      国产精品国产一区二区| 久久久精彩视频| 日本在线观看一区二区三区| 国产欧美韩日| 黑人巨大精品欧美一区二区小视频| 精品蜜桃一区二区三区| 99久久久久国产精品免费| 水蜜桃亚洲一二三四在线| 日本视频一区在线观看| 久久精品99久久| 精品国产乱码久久久久久108| 成人国产1314www色视频| 国产九色精品| 97中文在线观看| 尤物国产精品| 国产日韩欧美亚洲一区| 国产欧美一区二区三区不卡高清| 一区二区三区电影| 国产一区二区在线观看免费播放| 国产一区在线免费| 精品久久久久久中文字幕动漫| 视频一区二区在线| 久久亚洲高清| 亚洲一区二区三区加勒比| 开心色怡人综合网站| 亚洲自拍偷拍二区| 在线日韩av永久免费观看| 99伊人久久| 国产一级精品aaaaa看| 欧美精品亚洲| 国产精品一区而去| 国产富婆一区二区三区| 欧美日韩国产综合视频在线| 国产亚洲一区二区三区在线播放| 亚洲精品二区| 日韩精品大片| 一区二区三区偷拍| 亚洲高清视频一区| 欧美精品二区三区四区免费看视频| 国产欧美精品一区二区三区| 国产精品区一区二区三在线播放| 古典武侠综合av第一页| 欧美激情一区二区三区在线视频| 国产一区二区在线网站| 国产精品精品软件视频| 国产精品夜夜夜一区二区三区尤| 欧美亚洲免费高清在线观看| 日韩电影大全在线观看| 国产精品视频入口| 国产66精品久久久久999小说| 色播亚洲婷婷| 热re99久久精品国99热蜜月| 亚洲精品乱码视频| 亚洲一区二区三区涩| 夜夜爽99久久国产综合精品女不卡| 国产一区二区三区奇米久涩| 不卡视频一区二区三区| 精品一卡二卡三卡四卡日本乱码| 日本一区二区三区视频免费看| 国产精品国产精品国产专区蜜臀ah| 五月婷婷综合色| 一本一道久久久a久久久精品91| 日韩中文字幕av在线| 日本电影一区二区三区| 美媛馆国产精品一区二区| 欧美成人第一区| 一区二区日本| 精品国产一区二区三区久久久久久| 精品欧美日韩在线| 久久久久九九九| 欧美日韩综合另类| 欧美日韩另类丝袜其他| 免费看成人av| 蜜桃网站成人| 亚洲精蜜桃久在线| 亚洲日本精品国产第一区| 视频一区二区精品| 久久福利电影| 一区精品视频| 91成人伦理在线电影| 国产伦精品一区二区三区在线| 一区二区三区四区欧美| 欧美午夜精品久久久久久蜜| 91精品国自产在线观看| 国产欧美在线一区二区| 日本高清不卡一区二区三| 99中文字幕| 樱花www成人免费视频| 正在播放一区二区三区| 高清国产一区| 国产91一区二区三区| 欧日韩一区二区三区| 精品国产免费久久久久久尖叫| 精品人伦一区二区三区| 国产精品入口免费| 97久久精品午夜一区二区| 成人av播放| 一区二区三区免费看| 在线视频亚洲自拍| 欧美欧美一区二区| 精品高清视频| 欧美大香线蕉线伊人久久国产精品| 国产一区二区三区免费不卡| 欧美日本国产精品| 亚洲午夜精品久久久久久浪潮| 国精产品一区二区| 五月天久久狠狠| 鲁鲁狠狠狠7777一区二区| 日韩欧美在线观看强乱免费| 国产伦精品一区二区三区| 亚洲综合五月天| 伊人久久青草| 久久亚裔精品欧美| 五月婷婷综合色| 精品久久久久久乱码天堂| 91久久精品www人人做人人爽| 91精品国产一区二区三区动漫| 噜噜噜噜噜久久久久久91| 国产日韩精品推荐| 国产一区在线免费| 97碰碰视频| 韩国成人动漫在线观看| 欧美成ee人免费视频| 欧美日韩国产精品一区二区| 先锋影音欧美| 欧美日韩一区二区视频在线| 国产伦精品一区二区三区免费视频| 国产精品久久精品视| 日韩在线三区| 污视频在线免费观看一区二区三区| 99电影网电视剧在线观看| 在线天堂一区av电影| 国产精品视频一区二区三区经| 日本一区二区免费看| 精品一区久久| 成人久久18免费网站漫画| 99国产高清| 在线观看精品视频| 日韩精品电影网站| 日本婷婷久久久久久久久一区二区| 老司机精品福利在线观看| 美国av一区二区三区| 在线观看欧美激情| 国产高清不卡av| 久久精品日韩| 久久久精品有限公司| 国产精品美女诱惑| 麻豆亚洲一区| 日本一区高清不卡| 国产女主播一区二区| 亚洲欧洲日夜超级视频| 午夜精品电影在线观看| 成人黄动漫网站免费| 日本最新一区二区三区视频观看| 精品视频一区二区三区四区| 国产精品久久国产三级国电话系列| 综合网五月天| 日韩免费中文专区| 国产一级二级三级精品| 国产一级二级三级精品| 区一区二区三区中文字幕| 成人av中文| 亚洲va韩国va欧美va精四季| 国产综合第一页| 一区二区三区四区视频在线| 免费日韩电影在线观看| 不卡视频一区| 欧美日本国产精品| 久久精品日产第一区二区三区乱码| 久久国产欧美精品| 精品亚洲一区二区三区四区五区高| 日韩精品无码一区二区三区| 伊人精品久久久久7777| 久久久av水蜜桃| 一区二区三区四区欧美日韩| 97人摸人人澡人人人超一碰| 亚洲高清精品中出| 午夜精品区一区二区三| 国产美女99p| 中文字幕av日韩精品| 中文字幕色一区二区| 不卡一卡2卡3卡4卡精品在| 国产美女精品久久久| 国产精品我不卡| 一区二区三区在线视频看| 一区二区三区三区在线| 18成人免费观看网站下载| 99一区二区三区| 免费亚洲精品视频| 欧美一区2区三区4区公司二百| 欧洲在线视频一区| 欧美二区在线| 国产乱码精品一区二区三区卡| 中文字幕一区二区三区四区五区| 不卡视频一区二区三区| 国产成人av一区二区三区| 91免费观看| 久久er99热精品一区二区三区| 一区二区三区四区视频在线观看| 91黄色国产视频| 久久婷婷开心| 国产伦精品一区二区三区在线| 国产欧美日韩一区| 亚洲v国产v在线观看| 亚洲国产精品www| caoporn国产精品免费公开| 久久精品ww人人做人人爽| 精品日本一区二区三区| 亚洲春色在线视频| 一区国产精品| 欧美不卡1区2区3区| 懂色一区二区三区av片| 一本一道久久a久久精品综合| 成人av网站观看| 欧美精品人人做人人爱视频| 免费在线观看一区二区| 色综合666| 在线国产99| 欧美裸体网站| 久久一区二区精品| 在线观看成人av电影| 色涩成人影视在线播放| 中国成人在线视频| 五月天亚洲综合情| 韩国成人av| 日本一区二区在线视频观看| 色姑娘综合av| 精品国产综合| 俄罗斯精品一区二区三区| 午夜老司机精品| 亚洲国产一区二区精品视频| 国内精品一区二区| 狠狠色噜噜狠狠狠狠色吗综合| 91九色蝌蚪成人| 日本一区网站| 日本亚洲欧洲精品| 国内精品国语自产拍在线观看| 亚洲欧美日韩精品综合在线观看| 麻豆精品传媒视频| 国产乱码精品一区二区三区不卡| 欧美精品与人动性物交免费看| 亚洲图片都市激情| 亚洲精品日韩精品| 麻豆精品蜜桃一区二区三区| 99在线观看| 精品九九九九| 欧美一区二视频在线免费观看| 国产精品麻豆免费版| 高清视频一区二区三区| 日韩欧美激情一区二区| 亚洲欧洲一区二区福利| 成人9ⅰ免费影视网站| 国产一区二区三区四区五区加勒比| 免费成人深夜夜行视频| 99中文视频在线| 日本一区二区三不卡| 91精品综合久久| 性欧美大战久久久久久久免费观看| 日韩精品久久久| 国产日韩亚洲精品| 久久爱av电影| 欧美午夜免费| 国产欧美一区二区三区另类精品| 日本一区二区免费看| 中文字幕不卡每日更新1区2区| 999热视频| 国产成人精品免费视频大全最热| 福利精品视频| 视频一区在线免费观看| 一区二区在线观| 欧美一区少妇| 日韩在线三级| 亚洲一区三区在线观看| 精品在线观看一区二区| 一区二区精品视频| 成人黄色片视频网站| 午夜免费电影一区在线观看| 亚洲精品在线观看免费| av免费精品一区二区三区| 正在播放一区二区三区| 国产美女精品久久久| 国产手机精品在线| 久热这里只精品99re8久| 在线免费观看成人网| 国产精品一区二区不卡视频| 麻豆亚洲一区| 亚洲成色www久久网站| 91免费版网站在线观看| 精品乱色一区二区中文字幕| 国产精品sss| 成人国产1314www色视频| 99在线热播| 成人一区二区三区四区| 蜜桃av噜噜一区二区三| 裸模一区二区三区免费| 99re6在线| 欧美一区二区三区成人久久片| av资源一区二区| 成人欧美一区二区三区视频| 欧美久久电影| 91精品国产99久久久久久红楼| 亚洲欧美日产图| 婷婷四月色综合| 亚洲国产一区二区精品视频| 欧美激情一区二区三区在线视频| 久久av一区二区| 97久久天天综合色天天综合色hd| 亚洲资源视频| 国内一区二区在线视频观看| 国产视频一区二区不卡| 91pron在线| 日产国产精品精品a∨| 亚洲狠狠婷婷综合久久久| 一区二区三区三区在线| 2022国产精品| 亚洲国产精品综合| 国产精品青青草| 久久99九九| 国产精品国产三级国产专区53| 久久精品五月婷婷| 成人av网站观看| 亚洲黄色成人久久久| 蜜桃麻豆www久久国产精品| 国产精品手机视频| 中文字幕中文字幕在线中一区高清| 97人人模人人爽人人少妇| 欧美中文娱乐网| 国产女主播一区二区三区| 91大片在线观看| 欧美日韩一区二区视频在线| 亚洲人一区二区| 影音先锋在线亚洲| 自拍亚洲欧美老师丝袜| 日韩精品久久久毛片一区二区| 视频一区视频二区视频三区高| 免费观看成人高| 动漫美女被爆操久久久| 欧美极品视频一区二区三区| 亚洲国产高清国产精品| 欧美日韩在线不卡一区| 精品欧美一区二区精品久久| 亚洲精品美女久久7777777| 久久综合久久久| 久久久久久国产精品免费免费| 中文字幕日韩一区二区三区| 欧美连裤袜在线视频| 亚洲欧美日韩精品久久久| 日本午夜精品电影| 99视频国产精品免费观看| 久久久久久国产精品免费免费| 日本在线观看一区二区三区| 一区二区三区四区国产| 国内视频一区二区| 国产精品日韩欧美一区二区| 国产伦精品一区二区三区视频免费| 欧美久久在线| 神马影院午夜我不卡| 国产伦精品一区二区三区视频孕妇| 国产精品日韩高清| 精品国产一二| 欧美主播一区二区三区美女 久久精品人| 亚洲精品乱码视频| 精品999在线观看| 亚洲成人蜜桃| 亚洲国产一区二区三区在线播| 欧美精品成人一区二区在线观看| 国产经典一区二区三区| 欧美日韩国产综合在线| 麻豆av一区二区三区久久| 九九九九精品九九九九| 一区二区三区在线观看www| 婷婷久久青草热一区二区| 免费观看成人在线| 欧美极品一区二区| 久久久久久久久久久一区| 91九色极品视频| av一区和二区| 日韩av电影免费观看| 在线精品亚洲一区二区| 99蜜桃在线观看免费视频网站| 久久久久欧美| 日本午夜一区二区三区| 精品蜜桃一区二区三区| 国产伦精品一区二区三区照片| 不卡的av一区| 制服诱惑一区| 日本一区二区视频| 国产一区免费在线观看| 亚洲精品中字| 97久草视频| 在线视频亚洲自拍| 亚洲精品中文综合第一页| 97超碰最新| 一区二区三区不卡在线| 国产欧美日韩一区二区三区| 岛国一区二区三区高清视频| 亚洲一区二区三区免费看| 午夜欧美性电影| 不卡视频一区| 成人毛片网站|