<strike id="jrjdx"><ins id="jrjdx"></ins></strike>

<address id="jrjdx"></address>

    <listing id="jrjdx"><listing id="jrjdx"><meter id="jrjdx"></meter></listing></listing>
    <address id="jrjdx"></address><form id="jrjdx"><th id="jrjdx"><th id="jrjdx"></th></th></form>
    <address id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address></address>
    <noframes id="jrjdx">

    <noframes id="jrjdx">
    <form id="jrjdx"></form><form id="jrjdx"></form>

      <noframes id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address>
      <noframes id="jrjdx">

      課程目錄:Deep Learning for Vision培訓
      4401 人關注
      (78637/99817)
      課程大綱:

               Deep Learning for Vision培訓

       

       

       

      Deep Learning vs Machine Learning vs Other Methods
      When Deep Learning is suitable
      Limits of Deep Learning
      Comparing accuracy and cost of different methods
      Methods Overview
      Nets and Layers
      Forward / Backward: the essential computations of layered compositional models.
      Loss: the task to be learned is defined by the loss.
      Solver: the solver coordinates model optimization.
      Layer Catalogue: the layer is the fundamental unit of modeling and computation
      Convolution?
      Methods and models
      Backprop, modular models
      Logsum module
      RBF Net
      MAP/MLE loss
      Parameter Space Transforms
      Convolutional Module
      Gradient-Based Learning
      Energy for inference,
      Objective for learning
      PCA; NLL:
      Latent Variable Models
      Probabilistic LVM
      Loss Function
      Detection with Fast R-CNN
      Sequences with LSTMs and Vision + Language with LRCN
      Pixelwise prediction with FCNs
      Framework design and future
      Tools
      Caffe
      Tensorflow
      R
      Matlab
      Others...

      日韩不卡高清