<strike id="jrjdx"><ins id="jrjdx"></ins></strike>

<address id="jrjdx"></address>

    <listing id="jrjdx"><listing id="jrjdx"><meter id="jrjdx"></meter></listing></listing>
    <address id="jrjdx"></address><form id="jrjdx"><th id="jrjdx"><th id="jrjdx"></th></th></form>
    <address id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address></address>
    <noframes id="jrjdx">

    <noframes id="jrjdx">
    <form id="jrjdx"></form><form id="jrjdx"></form>

      <noframes id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address>
      <noframes id="jrjdx">

      課程目錄:Spark Streaming with Python and Kafka培訓
      4401 人關注
      (78637/99817)
      課程大綱:

               Spark Streaming with Python and Kafka培訓

       

       

       

      Introduction

      Overview of Spark Streaming Features and Architecture

      Supported data sources
      Core APIs
      Preparing the Environment

      Dependencies
      Spark and streaming context
      Connecting to Kafka
      Processing Messages

      Parsing inbound messages as JSON
      ETL processes
      Starting the streaming context
      Performing a Windowed Stream Processing

      Slide interval
      Checkpoint delivery configuration
      Launching the environment
      Prototyping the Processing Code

      Connecting to a Kafka topic
      Retrieving JSON from data source using Paw
      Variations and additional processing
      Streaming the Code

      Job control variables
      Defining values to match
      Functions and conditions
      Acquiring Stream Output

      Counters
      Kafka output (matched and non-matched)
      Troubleshooting

      Summary and Conclusion

      日韩不卡高清