<strike id="jrjdx"><ins id="jrjdx"></ins></strike>

<address id="jrjdx"></address>

    <listing id="jrjdx"><listing id="jrjdx"><meter id="jrjdx"></meter></listing></listing>
    <address id="jrjdx"></address><form id="jrjdx"><th id="jrjdx"><th id="jrjdx"></th></th></form>
    <address id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address></address>
    <noframes id="jrjdx">

    <noframes id="jrjdx">
    <form id="jrjdx"></form><form id="jrjdx"></form>

      <noframes id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address>
      <noframes id="jrjdx">

      課程目錄:Stream Processing with Kafka Streams培訓
      4401 人關注
      (78637/99817)
      課程大綱:

               Stream Processing with Kafka Streams培訓

       

       

       

      Introduction

      Kafka vs Spark, Flink, and Storm
      Overview of Kafka Streams Features

      Stateful and stateless processing, event-time processing, DSL, event-time based windowing operations, etc.
      Case Study: Kafka Streams API for Predictive Budgeting

      Setting up the Development Environment

      Creating a Streams Application

      Starting the Kafka Cluster

      Preparing the Topics and Input Data

      Options for Processing Stream Data

      High-level Kafka Streams DSL
      Lower-level Processor
      Transforming the Input Data

      Inspecting the Output Data

      Stopping the Kafka Cluster

      Options for Deploying the Application

      Classic ops tools (Puppet, Chef and Salt)
      Docker
      WAR file
      Troubleshooting

      Summary and Conclusion

      日韩不卡高清