<strike id="jrjdx"><ins id="jrjdx"></ins></strike>

<address id="jrjdx"></address>

    <listing id="jrjdx"><listing id="jrjdx"><meter id="jrjdx"></meter></listing></listing>
    <address id="jrjdx"></address><form id="jrjdx"><th id="jrjdx"><th id="jrjdx"></th></th></form>
    <address id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address></address>
    <noframes id="jrjdx">

    <noframes id="jrjdx">
    <form id="jrjdx"></form><form id="jrjdx"></form>

      <noframes id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address>
      <noframes id="jrjdx">

      課程目錄:A Practical Introduction to Stream Processing培訓
      4401 人關注
      (78637/99817)
      課程大綱:

               A Practical Introduction to Stream Processing培訓

       

       

      Introduction

      Stream processing vs batch processing
      Analytics-focused stream processing
      Overview Frameworks and Programming Languages

      Spark Streaming (Scala)
      Kafka Streaming (Java)
      Flink
      Storm
      Comparison of Features and Strengths of Each Framework
      Overview of Data Sources

      Live data as a series of events over time
      Historical data sources
      Deployment Options

      In the cloud (AWS, etc.)
      On premise (private cloud, etc.)
      Getting Started

      Setting up the Development Environment
      Installing and Configuring
      Assessing Your Data Analysis Needs
      Operating a Streaming Framework

      Integrating the Streaming Framework with Big Data Tools
      Event Stream Processing (ESP) vs Complex Event Processing (CEP)
      Transforming the Input Data
      Inspecting the Output Data
      Integrating the Stream Processing Framework with Existing Applications and Microservices
      Troubleshooting

      Summary and Conclusion

      日韩不卡高清