<strike id="jrjdx"><ins id="jrjdx"></ins></strike>

<address id="jrjdx"></address>

    <listing id="jrjdx"><listing id="jrjdx"><meter id="jrjdx"></meter></listing></listing>
    <address id="jrjdx"></address><form id="jrjdx"><th id="jrjdx"><th id="jrjdx"></th></th></form>
    <address id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address></address>
    <noframes id="jrjdx">

    <noframes id="jrjdx">
    <form id="jrjdx"></form><form id="jrjdx"></form>

      <noframes id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address>
      <noframes id="jrjdx">

      課程目錄:Accelerating Deep Learning with FPGA and OpenVINO培訓
      4401 人關注
      (78637/99817)
      課程大綱:

               Accelerating Deep Learning with FPGA and OpenVINO培訓

       

       

       

      Introduction

      Overview the Languages, Tools, and Libraries Needed for Accelerating a Computer Vision Application

      Setting up OpenVINO

      Overview of OpenVINO Toolkit and its Components

      Understanding Deep Learning Acceleration GPU and FPGA

      Writing Software That Targets FPGA

      Converting a Model Format for an Inference Engine

      Mapping Network Topologies onto FPGA Architecture

      Using an Acceleration Stack to Enable an FPGA Cluster

      Setting up an Application to Discover an FPGA Accelerator

      Deploying the Application for Real World Image Recognition

      Troubleshooting

      Summary and Conclusion

      日韩不卡高清