<strike id="jrjdx"><ins id="jrjdx"></ins></strike>

<address id="jrjdx"></address>

    <listing id="jrjdx"><listing id="jrjdx"><meter id="jrjdx"></meter></listing></listing>
    <address id="jrjdx"></address><form id="jrjdx"><th id="jrjdx"><th id="jrjdx"></th></th></form>
    <address id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address></address>
    <noframes id="jrjdx">

    <noframes id="jrjdx">
    <form id="jrjdx"></form><form id="jrjdx"></form>

      <noframes id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address>
      <noframes id="jrjdx">

      課程目錄:Kubeflow on OpenShift培訓
      4401 人關注
      (78637/99817)
      課程大綱:

               Kubeflow on OpenShift培訓

       

       

       

      Introduction

      Kubeflow on OpenShift vs public cloud managed services
      Overview of Kubeflow on OpenShift

      Code Read Containers
      Storage options
      Overview of Environment Setup

      Setting up a Kubernetes cluster
      Setting up Kubeflow on OpenShift

      Installing Kubeflow
      Coding the Model

      Choosing an ML algorithm
      Implementing a TensorFlow CNN model
      Reading the Data

      Accessing a dataset
      Kubeflow Pipelines on OpenShift

      Setting up an end-to-end Kubeflow pipeline
      Customizing Kubeflow Pipelines
      Running an ML Training Job

      Training a model
      Deploying the Model

      Running a trained model on OpenShift
      Integrating the Model into a Web Application

      Creating a sample application
      Sending prediction requests
      Administering Kubeflow

      Monitoring with Tensorboard
      Managing logs
      Securing a Kubeflow Cluster

      Setting up authentication and authorization
      Troubleshooting

      Summary and Conclusion

      日韩不卡高清