<strike id="jrjdx"><ins id="jrjdx"></ins></strike>

<address id="jrjdx"></address>

    <listing id="jrjdx"><listing id="jrjdx"><meter id="jrjdx"></meter></listing></listing>
    <address id="jrjdx"></address><form id="jrjdx"><th id="jrjdx"><th id="jrjdx"></th></th></form>
    <address id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address></address>
    <noframes id="jrjdx">

    <noframes id="jrjdx">
    <form id="jrjdx"></form><form id="jrjdx"></form>

      <noframes id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address>
      <noframes id="jrjdx">

      課程目錄:Deep Learning Neural Networks with Chainer培訓
      4401 人關注
      (78637/99817)
      課程大綱:

               Deep Learning Neural Networks with Chainer培訓

       

       

       

      Introduction

      Chainer vs Caffe vs Torch
      Overview of Chainer features and components
      Getting Started

      Understanding the trainer structure
      Installing Chainer, CuPy, and NumPy
      Defining functions on variables
      Training Neural Networks in Chainer

      Constructing a computational graph
      Running MNIST dataset examples
      Updating parameters using an optimizer
      Processing images to evaluate results
      Working with GPUs in Chainer

      Implementing recurrent neural networks
      Using multiple GPUs for parallelization
      Implementing Other Neural Network Models

      Defining RNN models and running examples
      Generating images with Deep Convolutional GAN
      Running Reinforcement Learning examples
      Troubleshooting

      Summary and Conclusion

      日韩不卡高清