<strike id="jrjdx"><ins id="jrjdx"></ins></strike>

<address id="jrjdx"></address>

    <listing id="jrjdx"><listing id="jrjdx"><meter id="jrjdx"></meter></listing></listing>
    <address id="jrjdx"></address><form id="jrjdx"><th id="jrjdx"><th id="jrjdx"></th></th></form>
    <address id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address></address>
    <noframes id="jrjdx">

    <noframes id="jrjdx">
    <form id="jrjdx"></form><form id="jrjdx"></form>

      <noframes id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address>
      <noframes id="jrjdx">

      課程目錄:Deep Learning for Vision with Caffe培訓
      4401 人關注
      (78637/99817)
      課程大綱:

               Deep Learning for Vision with Caffe培訓

       

       

       

       

      Installation
      Docker
      Ubuntu
      RHEL / CentOS / Fedora installation
      Windows
      Caffe Overview
      Nets, Layers, and Blobs: the anatomy of a Caffe model.
      Forward / Backward: the essential computations of layered compositional models.
      Loss: the task to be learned is defined by the loss.
      Solver: the solver coordinates model optimization.
      Layer Catalogue: the layer is the fundamental unit of modeling and computation – Caffe’s catalogue includes layers for state-of-the-art models.
      Interfaces: command line, Python, and MATLAB Caffe.
      Data: how to caffeinate data for model input.
      Caffeinated Convolution: how Caffe computes convolutions.
      New models and new code
      Detection with Fast R-CNN
      Sequences with LSTMs and Vision + Language with LRCN
      Pixelwise prediction with FCNs
      Framework design and future
      Examples:
      MNIST

      日韩不卡高清