<strike id="jrjdx"><ins id="jrjdx"></ins></strike>

<address id="jrjdx"></address>

    <listing id="jrjdx"><listing id="jrjdx"><meter id="jrjdx"></meter></listing></listing>
    <address id="jrjdx"></address><form id="jrjdx"><th id="jrjdx"><th id="jrjdx"></th></th></form>
    <address id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address></address>
    <noframes id="jrjdx">

    <noframes id="jrjdx">
    <form id="jrjdx"></form><form id="jrjdx"></form>

      <noframes id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address>
      <noframes id="jrjdx">

      課程目錄:Distributed Deep Learning with Horovod培訓
      4401 人關注
      (78637/99817)
      課程大綱:

               Distributed Deep Learning with Horovod培訓

       

       

       

      Introduction

      Overview of Horovod features and concepts
      Understanding the supported frameworks
      Installing and Configuring Horovod

      Preparing the hosting environment
      Building Horovod for TensorFlow, Keras, PyTorch, and Apache MXNet
      Running Horovod
      Running Distributed Training

      Modifying and running training examples with TensorFlow
      Modifying and running training examples with Keras
      Modifying and running training examples with PyTorch
      Modifying and running training examples with Apache MXNet
      Optimizing Distributed Training Processes

      Running concurrent operations on multiple GPUs
      Tuning hyperparameters
      Enabling performance autotuning
      Troubleshooting

      Summary and Conclusion

      日韩不卡高清