<strike id="jrjdx"><ins id="jrjdx"></ins></strike>

<address id="jrjdx"></address>

    <listing id="jrjdx"><listing id="jrjdx"><meter id="jrjdx"></meter></listing></listing>
    <address id="jrjdx"></address><form id="jrjdx"><th id="jrjdx"><th id="jrjdx"></th></th></form>
    <address id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address></address>
    <noframes id="jrjdx">

    <noframes id="jrjdx">
    <form id="jrjdx"></form><form id="jrjdx"></form>

      <noframes id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address>
      <noframes id="jrjdx">

      課程目錄:Fraud Detection with Python and TensorFlow培訓
      4401 人關注
      (78637/99817)
      課程大綱:

               Fraud Detection with Python and TensorFlow培訓

       

       

       

      Introduction

      TensorFlow Overview

      What is TensorFlow?
      TensorFlow features
      What is AI

      Computational Psychology
      Computational Philosophy
      Machine Learning

      Computational learning theory
      Computer algorithms for computational experience
      Deep Learning

      Artificial neural networks
      Deep learning vs. machine learning
      Preparing the Development Environment

      Installing and configuring TensorFlow
      TensorFlow Quick Start

      Working with nodes
      Using the Keras API
      Fraud Detection

      Reading and writing to data
      Preparing features
      Labeling data
      Normalizing data
      Splitting data into test data and training data
      Formatting input images
      Predictions and Regressions

      Loading a model
      Visualizing predictions
      Creating regressions
      Classifications

      Building and compiling a classifier model
      Training and testing the model
      Summary and Conclusion

      日韩不卡高清