<strike id="jrjdx"><ins id="jrjdx"></ins></strike>

<address id="jrjdx"></address>

    <listing id="jrjdx"><listing id="jrjdx"><meter id="jrjdx"></meter></listing></listing>
    <address id="jrjdx"></address><form id="jrjdx"><th id="jrjdx"><th id="jrjdx"></th></th></form>
    <address id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address></address>
    <noframes id="jrjdx">

    <noframes id="jrjdx">
    <form id="jrjdx"></form><form id="jrjdx"></form>

      <noframes id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address>
      <noframes id="jrjdx">

      課程目錄:Cassandra for Developers - Bespoke培訓
      4401 人關注
      (78637/99817)
      課程大綱:

               Cassandra for Developers - Bespoke培訓

       

       

       

      Section 1: Introduction to Big Data / NoSQL
      NoSQL overview
      CAP theorem
      When is NoSQL appropriate
      Columnar storage
      NoSQL ecosystem
      Section 2 : Cassandra Basics
      Design and architecture
      Cassandra nodes, clusters, datacenters
      Keyspaces, tables, rows and columns
      Partitioning, replication, tokens
      Quorum and consistency levels
      Labs : interacting with cassandra using CQLSH
      Section 3: Data Modeling – part 1
      introduction to CQL
      CQL Datatypes
      creating keyspaces & tables
      Choosing columns and types
      Choosing primary keys
      Data layout for rows and columns
      Time to live (TTL)
      Querying with CQL
      CQL updates
      Collections (list / map / set)
      Labs : various data modeling exercises using CQL ; experimenting with queries and supported data types
      Section 4: Data Modeling – part 2
      Creating and using secondary indexes
      composite keys (partition keys and clustering keys)
      Time series data
      Best practices for time series data
      Counters
      Lightweight transactions (LWT)
      Labs : creating and using indexes; modeling time series data
      Section 5 : Data Modeling Labs : Group design session
      multiple use cases from various domains are presented
      students work in groups to come up designs and models
      discuss various designs, analyze decisions
      Lab : implement one of the scenario
      Section 6: Cassandra drivers
      Introduction to Java driver
      CRUD (Create / Read / Update, Delete) operations using Java client
      Asynchronous queries
      Labs : using Java API for Cassandra
      Section 7 : Cassandra Internals
      understand Cassandra design under the hood
      sstables, memtables, commit log
      read path / write path
      caching
      vnodes
      Section 8: Administration
      Hardware selection
      Cassandra distributions
      Installing Cassandra
      Running benchmarks
      Tooling for monitoring performance and node activities
      DataStax OpsCenter
      Diagnosting Cassandra performance issues
      Investigating a node crash
      Understanding data repair, deletion and replication
      Other troubleshooting tools and tips
      Cassandra best practices (compaction, garbage collection,)
      Section 9: Bonus Lab (time permitting)
      Implement a music service like Pandora / Spotify on Cassandra

      日韩不卡高清