<strike id="jrjdx"><ins id="jrjdx"></ins></strike>

<address id="jrjdx"></address>

    <listing id="jrjdx"><listing id="jrjdx"><meter id="jrjdx"></meter></listing></listing>
    <address id="jrjdx"></address><form id="jrjdx"><th id="jrjdx"><th id="jrjdx"></th></th></form>
    <address id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address></address>
    <noframes id="jrjdx">

    <noframes id="jrjdx">
    <form id="jrjdx"></form><form id="jrjdx"></form>

      <noframes id="jrjdx"><address id="jrjdx"><listing id="jrjdx"></listing></address>
      <noframes id="jrjdx">

      課程目錄:AutoML培訓
      4401 人關注
      (78637/99817)
      課程大綱:

               AutoML培訓

       

       

       

      Introduction

      Setting up a Working Environment

      Overview of AutoML Features

      How AutoML Explores Algorithms

      Gradient Boosting Machines (GBMs), Random Forests, GLMs, etc.
      Solving Problems by Use-Case

      Solving Problems by Training Data Type

      Data Privacy Considerations

      Cost Considerations

      Preparing Data

      Working with Numeric and Categorical Data

      IID tabular data (H2O AutoML, auto-sklearn, TPOT)
      Working with Time Dependent Data (Time-Series Data)

      Classifying Raw Text

      Classifying Raw Image Data

      Deep Learning and Neural Architecture Search (TensorFlow, PyTorch, Auto-Keras, etc.)
      Deploying an AutoML Method

      A Look at the Algorithms Inside AutoML

      Ensembling Different Models Together

      Troubleshooting

      Summary and Conclusion

      日韩不卡高清